
Hashing
CSE 332 – Section 5

Slides by James Richie Sulaeman

Announcements

● Midterm Next Week! Wednesday April 30th, 6:00-7:20 PM in BAG 154 and 131 (we

will let you know which room to go to)

○ Covers everything up to and including Hash Tables

○ Check the bottom of the Exams section of the course website for past exams

○ Come to office hours if you have questions about anything!

https://courses.cs.washington.edu/courses/cse332/25sp/exams/midterm.html

Hashing

A collision occurs when two keys map onto the same location in a hash table.
● This is impossible to eliminate since the number of possible keys exceeds table size.

Collision Resolution

There are multiple ways to resolve conflicts:
● Separate Chaining

○ All elements with keys that map to the same table location are kept in a linked list.
● Open Addressing

○ If the slot is full, we probe the next slot.
○ On the ith probe, we check the slot with index (h(key) + f(i)) % TableSize.

- Linear Probing: f(i) = i
- Quadratic Probing: f(i) = i

2

- Double Hashing: f(i) = i ᐧ g(key)

Problem 1a
Linear Probing

 ith probe: (h(key) + i) % TableSize

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7

8

9

● (h(7) + 0) % 10 = 7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7

8

9

7

● (h(9) + 0) % 10 = 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

● (h(48) + 0) % 10 = 8

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

48

● (h(8) + 0) % 10 = 8

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7 7

8 48

9 9

● (h(8) + 1) % 10 = 9
● (h(8) + 2) % 10 = 0

8

● (h(37) + 0) % 10 = 7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1

2

3

4

5

6

7 7

8 48

9 9

● (h(37) + 1) % 10 = 8
● (h(37) + 2) % 10 = 9
● (h(37) + 3) % 10 = 0
● (h(37) + 4) % 10 = 1

37

● (h(57) + 0) % 10 = 7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 37

2

3

4

5

6

7 7

8 48

9 9

● (h(57) + 1) % 10 = 8
● (h(57) + 2) % 10 = 9
● (h(57) + 3) % 10 = 0
● (h(57) + 4) % 10 = 1

57

● (h(57) + 5) % 10 = 2

Delete 37, 7, 57 from the table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 37

2 57

3

4

5

6

7 7

8 48

9 9

Delete 37, 7, 57 from the table.

● (h(37) + 0) % 10 = 7

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 37

2 57

3

4

5

6

7 7

8 48

9 9

● (h(37) + 1) % 10 = 8
● (h(37) + 2) % 10 = 9
● (h(37) + 3) % 10 = 0
● (h(37) + 4) % 10 = 1

DELETEDDelete 37, 7, 57 from the table.

● (h(7) + 0) % 10 = 7

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 DELETED

2 57

3

4

5

6

7 7

8 48

9 9

DELETED

Delete 37, 7, 57 from the table.

● (h(57) + 0) % 10 = 7

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 DELETED

2 57

3

4

5

6

7 DELETED

8 48

9 9

● (h(57) + 1) % 10 = 8
● (h(57) + 2) % 10 = 9
● (h(57) + 3) % 10 = 0
● (h(57) + 4) % 10 = 1

DELETED

● (h(57) + 5) % 10 = 2

Delete 37, 7, 57 from the table.

Experiment
What happens if we now try to remove a

non-existent element (e.g. 17) from the table?

● (h(17) + 0) % 10 = 7

Experiment Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 DELETED

2 DELETED

3

4

5

6

7 DELETED

8 48

9 9

● (h(17) + 1) % 10 = 8
● (h(17) + 2) % 10 = 9
● (h(17) + 3) % 10 = 0
● (h(17) + 4) % 10 = 1
● (h(17) + 5) % 10 = 2

Delete 17 from the table.

● (h(17) + 6) % 10 = 3
We have reached an empty slot, but have not
encountered 17. Therefore, it must not exist.

Problem 1b
Quadratic Probing

 ith probe: (h(key) + i

2) % TableSize

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7

8

9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(7) + 02) % 10 = 7

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7

8

9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

7

● (h(9) + 02) % 10 = 9

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(48) + 02) % 10 = 8

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

48

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(8) + 02) % 10 = 8

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7 7

8 48

9 9

● (h(8) + 12) % 10 = 9
● (h(8) + 22) % 10 = 2

8

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(37) + 02) % 10 = 7

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2 8

3

4

5

6

7 7

8 48

9 9

● (h(37) + 12) % 10 = 8
● (h(37) + 22) % 10 = 1

37Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(57) + 02) % 10 = 7

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1 37

2 8

3

4

5

6

7 7

8 48

9 9

● (h(57) + 12) % 10 = 8
● (h(57) + 22) % 10 = 1

57

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(57) + 32) % 10 = 6

Problem 1c
Separate Chaining

Use a linked list for each slot

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7

8

9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(7) % 10 = 7

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7

8

9

7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(9) % 10 = 9

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7 7

8

9 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(48) % 10 = 8

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7 7

8

9 9

48

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(8) % 10 = 8

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7 7

8 48

9 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

8

● h(37) % 10 = 7

Problem 1c Separate Chaining
Use a linked list for each slot

Insert 7, 9, 48, 8, 37, 57 into an empty table.

37

8

0

1

2

3

4

5

6

7 7

8 48

9 9

● h(57) % 10 = 7

Problem 1c Separate Chaining
Use a linked list for each slot

Insert 7, 9, 48, 8, 37, 57 into an empty table.

37 57

0

1

2

3

4

5

6

7 7

8 48

9 9

8

Problem 2

Describe double hashing.
● On the ith probe, we check the slot with index (h(key) + i ᐧ g(key)) % TableSize.
● The first hash function h determines the location where we initially try to place the item.
● If there is a collision, then the second hash function g determines the probing step size

(i.e. 1 ᐧ g(key), 2 ᐧ g(key), … distance away from the initial location).

Problem 2a

List two disadvantages of quadratic probing.

Describe how double hashing fixes one of these disadvantages.

Problem 2b

1. If the table is more than half full (i.e. load factor > 0.5), then we are not guaranteed to
find a location to insert an item.

2. Suffers from secondary clustering since items that initially hash to the same location
resolve the collision identically.

A good second hash function prevents secondary clustering since items that initially hash to
the same location will likely resolve the collision differently.
● Items that have the same value for the first hash function f, will likely have different

values for the second hash function g, leading to different probing step sizes.

Compare open addressing with separate chaining.

Problem 2c

Open Addressing Separate Chaining

Handles collisions by searching for an open slot within the
table itself.

Handles collisions by adding elements to a chain at the
corresponding index.

Can use less memory since all elements are stored within the
table itself.

Uses more memory since additional data structures are
needed. Worse memory locality.

Linear probing suffers from primary clustering, but is
guaranteed to find an open slot. Average runtime: O(1 + 𝜆)

Quadratic probing suffers from secondary clustering, and is
only guaranteed to find an empty slot when 𝜆 < 0.5. Best-case runtime: O(1)

Double hashing does not suffer from clustering, but requires
an additional hash function (computationally expensive). Worst-case runtime: O(n)

Problem 3

For each of the following questions, choose a collision resolution between
Linear Probing, Quadratic Probing, Double Hashing, and Separate Chaining

a) You are implementing a hash table on hardware with low memory and low computational power.
Thankfully, your hash function almost always spreads keys out evenly and the items you are
hashing take up a small amount of memory (e.g. integers or shorts). Which collision resolution is
best?

b) Now you are working on creating a hash table specifically for Strings. The issue is these strings
are all extremely long! The Strings are so long that the process of hashing them (which includes
iterating through every char) affects the runtime. Which collision resolution is best?

c) You are designing a hash table with your CSE 332 TA. However, the initial hash function that they
designed causes items to cluster and they are adamant about keeping it. Which collision
resolution is best?

Problem 3

a) You are implementing a hash table on hardware with
low memory and low computational power. Thankfully,
your hash function almost always spreads keys out
evenly and the items you are hashing take up a small
amount of memory (e.g. integers or shorts). Which
collision resolution is best?

Problem 3a

Therefore Linear Probing is best
• Tightly packs data together tightly -> saves space
• Primary clustering isn’t a big issue since our hash function almost always spreads

keys out evenly.

Double Hashing –
• Requires a second hash

function 🡪 bad for low
computational power
environment

Quadratic Probing –
• Leaves holes to resolve

collisions 🡪 less efficient
space use

• Load factor must be < 0.5
🡪 more frequent resizes
🡪 bad for low
computational power

Separate Chaining –
• keys are small and using

low memory device 🡪
memory overhead from
using LinkedList is bad.

b) Now you are working on creating a hash table
specifically for Strings. The issue is these strings are all
extremely long! The Strings are so long that the process
of hashing them (which includes iterating through every
char) affects the runtime. Which collision resolution is
best?

Problem 3b

Therefore, Separate Chaining is best
• Load factor can be > 1.0, without breaking the hash table 🡪 less resizing 🡪

minimize rehashing
• Long strings 🡪 unlikely to hash to the same index 🡪 good distribution 🡪 more even

chain length
• Long strings = high memory 🡪 overhead from LinkedList is negligible.

Double Hashing –
• Requires a second hash

on collision 🡪 Want to
avoid rehashing so not
good

Quadratic Probing –
• Load factor must be < 0.5

🡪 more frequent resizes
🡪 must rehash all
elements more frequently
not good

Linear Probing –
• Load Factor must be < 1.0

🡪 more frequent resizes 🡪
must rehash elements
more frequently so not
good

c) You are designing a hash table with your CSE 332
TA. However, the initial hash function that they designed
causes items to cluster and they are adamant about
keeping it. Which collision resolution is best?

Problem 3c

Therefore, Double Hashing is best
• Provides the most even distribution of data on collision 🡪 less clustering issues

Linear Probing –
• Simple Hash Function 🡪

more collisions 🡪 Primary
clustering

Quadratic Probing –
• Simple Hash Function 🡪

more collisions 🡪
Secondary clustering

Separate Chaining –
• Simple Hash Function 🡪

more collisions 🡪 long
chains around cluster
areas.

Thank You!

